Multi-response optimization of Artemia hatching process using split-split-plot design based response surface methodology
نویسندگان
چکیده
A novel method, BBD-SSPD is proposed by the combination of Box-Behnken Design (BBD) and Split-Split Plot Design (SSPD) which would ensure minimum number of experimental runs, leading to economical utilization in multi- factorial experiments. The brine shrimp Artemia was tested to study the combined effects of photoperiod, temperature and salinity, each with three levels, on the hatching percentage and hatching time of their cysts. The BBD was employed to select 13 treatment combinations out of the 27 possible combinations that were grouped in an SSPD arrangement. Multiple responses were optimized simultaneously using Derringer's desirability function. Photoperiod and temperature as well as temperature-salinity interaction were found to significantly affect the hatching percentage of Artemia, while the hatching time was significantly influenced by photoperiod and temperature, and their interaction. The optimum conditions were 23 h photoperiod, 29 °C temperature and 28 ppt salinity resulting in 96.8% hatching in 18.94 h. In order to verify the results obtained from BBD-SSPD experiment, the experiment was repeated preserving the same set up. Results of verification experiment were found to be similar to experiment originally conducted. It is expected that this method would be suitable to optimize the hatching process of animal eggs.
منابع مشابه
Process optimization for ethanol production from very high gravity (VHG) finger millet medium using response surface methodology
The Box-Wilson central composite design (CCD) based on response surface methodology (RSM) was used for ethanol fermentation using very high gravity (VHG) finger millet hydrolysate. Optimized process variables were namely, concentrations of yeast extract, magnesium sulphate and pH of the medium. High gravity mashes (>300 g dissolved solids per liter) were prepared by a thermo-stable α-amylase, f...
متن کاملLinkage factors optimization of Multi-outputs of compliant mechanism using Response Surface
This paper presents a linkage factors synthesis and multi-level optimization technique for bi-stable compliant mechanism. The linkage synthesis problem is modeled as multiple level factors and responses optimization problem with constraints. The bi-stable compliant mechanism is modeled as a crank slider mechanism using pseudo-rigid-body model (PRBM). The model exerts the large deflection of fle...
متن کاملOptimization of Biodiesel Production from Castor Oil Using a Microwave Via Response Surface Methodology (RSM)
The purpose of this research work was to investigate the optimum operating conditions for biodiesel production from castor oil using a microwave. The Box–Behnken design of experiment was carried out using the Design Expert 7. A response surface methodology (RSM) was used to analyze the influence of the process variables (molar ratio of methanol to castor oil, catalyst concentration, reaction ti...
متن کاملStatistical Analysis and Optimization of Factors Affecting the Surface Roughness in UVaSPIF Process Using Response Surface Methodology
Ultrasonic vibration assisted single point incremental forming (UVaSPIF) is based on localized plastic deformation in a sheet metal blank. It consists to deform gradually and locally the sheet metal using vibrating hemispherical-head tool controlled by a CNC milling machine. The ultrasonic excitation of forming tool reduces the vertical component of forming force. In addition, application of ul...
متن کاملRemoval of methylene blue from aqueous solution using nano-TiO2/UV process: Optimization by response surface methodology
This work describes the photocatalytic removal of methylene blue from aqueous solution by titanium dioxide nanoparticles under ultraviolet irradiation in a batch system. The effect of operational parameters such as irradiation time, nano titanium dioxide dosage, pH and initial methylene blue concentration were analyzed and optimized by response surface methodology in the nano titanium dioxide/u...
متن کامل